New link found between disrupted body clock and inflammatory diseases
New research has demonstrated the significant role an irregular body clock plays
RCSI research shows how an irregular body clock drives up inflammation in the body’s immune cells. This includes implications for the most serious and prevalent diseases in humans.
Published in Frontiers in Immunology, the research was led by the School of Pharmacy and Biomolecular Sciences at RCSI University of Medicine and Health Sciences.
The circadian body clock generates 24-hour rhythms that keep humans healthy and in time with the day/night cycle. This includes regulating the rhythm of the body’s own (innate) immune cells called macrophages. When these cell rhythms are disrupted (due to things like erratic eating/sleeping patterns or shift work), the cells produce molecules which drive inflammation. This leads to chronic inflammatory diseases. These diseases can be heart disease, obesity, arthritis, diabetes and cancer, and also impact our ability to fight infection.
About the study
In this study, the researchers looked at these key immune cells called macrophages. They looked at them with and without a body clock under laboratory conditions. Researchers wanted to understand if macrophages without a body clock might use or ‘metabolise’ fuel differently. They also wanted to see if that might be the reason these cells produce more inflammatory products.
The researchers found that macrophages without a body clock took up far more glucose. This meant it broke it down more quickly than normal cells. They also found that, in the mitochondria (the cells energy powerhouse), the pathways by which glucose was further broken down to produce energy are very different in macrophages without a clock. This led to the production of reactive oxygen species (ROS) which further fuelled inflammation
Dr George Timmons, lead author on the study, said: “Our results add to the growing body of work showing why disruption of our body clock leads to inflammatory and infectious disease. One of the aspects is fuel usage at the level of key immune cells such as macrophages.”
Dr Annie Curtis, Senior Lecturer at RCSI School of Pharmacy and Biomolecular Sciences and senior author on the paper, added: “This study also shows that anything which negatively impacts on our body clocks, such as insufficient sleep and not enough daylight, can impact on the ability of our immune system to work effectively.”
RCSI conducted the study in collaboration with researchers from Swansea University, Trinity College Dublin and University of Bristol.
Catch up on our Latest News